中学生・高校生向け 英・数・小論文 講座&宿題サポート
http://www.wise.web-studies.info/
========================================================
・難関中学の受験問題にチャレンジ 数学02(2)
出題元 : 2013年神戸女学院中学部 入試問題
http://mainichi.jp/sp/kaitou/
問2
偶数枚(ぐうすうまい)のカードをつみ重ねた山があります。
このカードの山をちょうど半分の枚数のところで上下2つに区切り、
上半分をA、下半分をBとします。
そして
Aの1番上のカードの下にBの一番上のカード、
続けてAの2番目のカード、Bの2番目のカード、…と交互に組みかえて、
再び1つの山を作ります。これを操作Xとよぶことにします。
(2)何枚かのカードを用意して、操作Xを続けて2回行うと、
最初上から55枚目であったカードが元の位置に戻りました。
カードは全部で何枚ありますか。
解説
操作2回目で 55枚目になるためには
操作1回目で 28枚目にあればよい。
操作1回目で順番が28枚目になる ということは
偶数枚目なので 操作前の段階では 55枚目はBグループにあることが分かる。
更に 操作1回目で28枚目になるためには
55枚目は操作前の段階では Bグループの14枚目 でなければならない。
よって
Bグループの14枚目 = 全体の55枚目 が成り立てばよい。
全体の枚数を 2Y とすると
Y + 14 = 55 が成り立てばよい。
よって Y = 41
∴ 2Y = 82
よって 82枚 である。
ブログランキングに参加しました。
是非クリックしてください。
人気ブログランキングへ
========================================================
鹿児島 学習塾 WISE:
http://www.wise.web-studies.info/
0 件のコメント:
コメントを投稿